Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents. / Stagaard, R.; Flick, M. J.; Bojko, B.; Goryński, K.; Goryńska, P. Z.; Ley, C. D.; Olsen, L. H.; Knudsen, T.

In: Journal of Thrombosis and Haemostasis, Vol. 16, No. 7, 2018, p. 1369-1382.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Stagaard, R, Flick, MJ, Bojko, B, Goryński, K, Goryńska, PZ, Ley, CD, Olsen, LH & Knudsen, T 2018, 'Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents', Journal of Thrombosis and Haemostasis, vol. 16, no. 7, pp. 1369-1382. https://doi.org/10.1111/jth.14148

APA

Stagaard, R., Flick, M. J., Bojko, B., Goryński, K., Goryńska, P. Z., Ley, C. D., Olsen, L. H., & Knudsen, T. (2018). Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents. Journal of Thrombosis and Haemostasis, 16(7), 1369-1382. https://doi.org/10.1111/jth.14148

Vancouver

Stagaard R, Flick MJ, Bojko B, Goryński K, Goryńska PZ, Ley CD et al. Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents. Journal of Thrombosis and Haemostasis. 2018;16(7):1369-1382. https://doi.org/10.1111/jth.14148

Author

Stagaard, R. ; Flick, M. J. ; Bojko, B. ; Goryński, K. ; Goryńska, P. Z. ; Ley, C. D. ; Olsen, L. H. ; Knudsen, T. / Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents. In: Journal of Thrombosis and Haemostasis. 2018 ; Vol. 16, No. 7. pp. 1369-1382.

Bibtex

@article{e5330acb6f054c9fa054b83678dd3a69,
title = "Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents",
abstract = "Essentials The efficacy of systemic antifibrinolytics for hemophilic non-mucosal bleeding is undetermined. The effect of systemically inhibiting fibrinolysis in hemophilic mice and rats was explored. Neither bleeding nor the response to factor treatment was improved after inhibiting fibrinolysis. The non-mucosal bleeding phenotype in hemophilia A appears largely unaffected by fibrinolysis. Summary: Background Fibrinolysis may exacerbate bleeding in patients with hemophilia A (HA). Accordingly, antifibrinolytics have been used to help maintain hemostatic control. Although antifibrinolytic drugs have been proven to be effective in the treatment of mucosal bleeds in the oral cavity, their efficacy in non-mucosal tissues remain an open question of significant clinical interest. Objective To determine whether inhibiting fibrinolysis improves the outcome in non-mucosal hemophilic tail vein transection (TVT) bleeding models, and to determine whether a standard ex vivo clotting/fibrinolysis assay can be used as a predictive surrogate for in vivo efficacy. Methods A highly sensitive TVT model was employed in hemophilic rodents with a suppressed fibrinolytic system to examine the effect of inhibiting fibrinolysis on bleeding in non-mucosal tissue. In mice, induced and congenital hemophilia models were combined with fibrinolytic attenuation achieved either genetically or pharmacologically (tranexamic acid [TXA]). In hemophilic rats, tail bleeding was followed by whole blood rotational thromboelastometry evaluation of the same animals to gauge the predictive value of such assays. Results The beneficial effect of systemic TXA therapy observed ex vivo could not be confirmed in vivo in hemophilic rats. Furthermore, neither intravenously administered TXA nor congenital knockout of the fibrinolytic genes encoding plasminogen or tissue-type plasminogen activator markedly improved the TVT bleeding phenotype or response to factor therapy in hemophilic mice. Conclusions The findings here suggest that inhibition of fibrinolysis is not effective in limiting the TVT bleeding phenotype of HA rodents in non-mucosal tissues.",
keywords = "blood coagulation factors, fibrinolysis, hemophilia A, tail, tranexamic acid",
author = "R. Stagaard and Flick, {M. J.} and B. Bojko and K. Gory{\'n}ski and Gory{\'n}ska, {P. Z.} and Ley, {C. D.} and Olsen, {L. H.} and T. Knudsen",
year = "2018",
doi = "10.1111/jth.14148",
language = "English",
volume = "16",
pages = "1369--1382",
journal = "Journal of Thrombosis and Haemostasis",
issn = "1538-7933",
publisher = "Wiley-Blackwell",
number = "7",

}

RIS

TY - JOUR

T1 - Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents

AU - Stagaard, R.

AU - Flick, M. J.

AU - Bojko, B.

AU - Goryński, K.

AU - Goryńska, P. Z.

AU - Ley, C. D.

AU - Olsen, L. H.

AU - Knudsen, T.

PY - 2018

Y1 - 2018

N2 - Essentials The efficacy of systemic antifibrinolytics for hemophilic non-mucosal bleeding is undetermined. The effect of systemically inhibiting fibrinolysis in hemophilic mice and rats was explored. Neither bleeding nor the response to factor treatment was improved after inhibiting fibrinolysis. The non-mucosal bleeding phenotype in hemophilia A appears largely unaffected by fibrinolysis. Summary: Background Fibrinolysis may exacerbate bleeding in patients with hemophilia A (HA). Accordingly, antifibrinolytics have been used to help maintain hemostatic control. Although antifibrinolytic drugs have been proven to be effective in the treatment of mucosal bleeds in the oral cavity, their efficacy in non-mucosal tissues remain an open question of significant clinical interest. Objective To determine whether inhibiting fibrinolysis improves the outcome in non-mucosal hemophilic tail vein transection (TVT) bleeding models, and to determine whether a standard ex vivo clotting/fibrinolysis assay can be used as a predictive surrogate for in vivo efficacy. Methods A highly sensitive TVT model was employed in hemophilic rodents with a suppressed fibrinolytic system to examine the effect of inhibiting fibrinolysis on bleeding in non-mucosal tissue. In mice, induced and congenital hemophilia models were combined with fibrinolytic attenuation achieved either genetically or pharmacologically (tranexamic acid [TXA]). In hemophilic rats, tail bleeding was followed by whole blood rotational thromboelastometry evaluation of the same animals to gauge the predictive value of such assays. Results The beneficial effect of systemic TXA therapy observed ex vivo could not be confirmed in vivo in hemophilic rats. Furthermore, neither intravenously administered TXA nor congenital knockout of the fibrinolytic genes encoding plasminogen or tissue-type plasminogen activator markedly improved the TVT bleeding phenotype or response to factor therapy in hemophilic mice. Conclusions The findings here suggest that inhibition of fibrinolysis is not effective in limiting the TVT bleeding phenotype of HA rodents in non-mucosal tissues.

AB - Essentials The efficacy of systemic antifibrinolytics for hemophilic non-mucosal bleeding is undetermined. The effect of systemically inhibiting fibrinolysis in hemophilic mice and rats was explored. Neither bleeding nor the response to factor treatment was improved after inhibiting fibrinolysis. The non-mucosal bleeding phenotype in hemophilia A appears largely unaffected by fibrinolysis. Summary: Background Fibrinolysis may exacerbate bleeding in patients with hemophilia A (HA). Accordingly, antifibrinolytics have been used to help maintain hemostatic control. Although antifibrinolytic drugs have been proven to be effective in the treatment of mucosal bleeds in the oral cavity, their efficacy in non-mucosal tissues remain an open question of significant clinical interest. Objective To determine whether inhibiting fibrinolysis improves the outcome in non-mucosal hemophilic tail vein transection (TVT) bleeding models, and to determine whether a standard ex vivo clotting/fibrinolysis assay can be used as a predictive surrogate for in vivo efficacy. Methods A highly sensitive TVT model was employed in hemophilic rodents with a suppressed fibrinolytic system to examine the effect of inhibiting fibrinolysis on bleeding in non-mucosal tissue. In mice, induced and congenital hemophilia models were combined with fibrinolytic attenuation achieved either genetically or pharmacologically (tranexamic acid [TXA]). In hemophilic rats, tail bleeding was followed by whole blood rotational thromboelastometry evaluation of the same animals to gauge the predictive value of such assays. Results The beneficial effect of systemic TXA therapy observed ex vivo could not be confirmed in vivo in hemophilic rats. Furthermore, neither intravenously administered TXA nor congenital knockout of the fibrinolytic genes encoding plasminogen or tissue-type plasminogen activator markedly improved the TVT bleeding phenotype or response to factor therapy in hemophilic mice. Conclusions The findings here suggest that inhibition of fibrinolysis is not effective in limiting the TVT bleeding phenotype of HA rodents in non-mucosal tissues.

KW - blood coagulation factors

KW - fibrinolysis

KW - hemophilia A

KW - tail

KW - tranexamic acid

U2 - 10.1111/jth.14148

DO - 10.1111/jth.14148

M3 - Journal article

C2 - 29758126

AN - SCOPUS:85049512690

VL - 16

SP - 1369

EP - 1382

JO - Journal of Thrombosis and Haemostasis

JF - Journal of Thrombosis and Haemostasis

SN - 1538-7933

IS - 7

ER -

ID: 201909757